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Abstract. Guided by an approach used in the study of membranes we construct the partition
function for a discrete Gaussian chain model of polymers. The HamiltonianssHo+ u tr 7,

where Hp describes the chain connectivity, is the inertia tensor, which gives the shape
and size of the polymer chain, and tr denotes the trace. Here we consider only the size,
Ré = (tr 7), which is obtained from the partition function by differentiating with respect to the
conjugate variable.. The partition function is expressed in terms of the hypergeometric function
2Fi(n+1, —n+1; g; —z?), an orthogonal polynomial, whereis the number of monomers and

z2 is the ratio ofy. and the coefficient ift{g. The limit z — O corresponds to the random coil,
while the limitz — 1 describes a compact object. We also study the excluded volume problem
by discretizing Edwards’ continuous self-avoidance term. We obtain dimensionally regularized
expressions for the radius of gyration and the end-to-end distance. The short distance cut-off
dependence of the continuous model is reproduced.

1. Introduction

A commonly used measure of the size of a flexible polymer chain in solution is its end-to-
end distanceRe. However, it was recognized long ago [1] that the radius of gyraikgn
is a better measure of the size thRp. Indeed the structure (or form) factor

Gk) = i< Z expik - (ry — rm))> |k| = (4 /1) Sin(6/2) (1.2)
¢,m=1

which is proportional to the intensity of scattered radiation [2, 3], is determined by the radius
of gyration through the relatio& (k) = nf (|k|Rg) [2,3]. Heren is the number of links in
the chaing is the scattering angle, andis the wavelength of the radiation.

Despite the realization thakg is more fundamental thaRg, most theoretical studies
take the end-to-end distance (which is not accessible to experiment) as a central object,
and determine the radius of gyration on that basis. This is due in part to the fact that the
end-to-end distance of a chain (or segment thereof) has a Gaussian distribution when the
number of links (or monomers) is sufficiently large; the distributionRef is not known
[1]. In this approach one calculates the Fourier transform

C(k; x1, xp) = (eFIr=r2l) 1.2)

of the probability distributionP ([ (x1) — r(x2)] — p) for two links located at positions;
andx,, respectively, along the chain, to be separated by a disjan@ée braceg) denote
an average, and the position in the embedding space of monomedenoted byr(x;).
The segment end-to-end distance

(Ir(x1) — 7(x2)|?) = —[V2C]lk=0 (1.3)
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is then used to calculate the radius of gyration,
1
RE = / vy da([r(x1) — r(x2)]?) (1.4)

whereL is the contour length of the chain. Thus calculationRgfis, in a sense, based on

the end-to-end distand@r(x1) —r(x»)|%), and clouds the correct interpretation tlmil gives

the distribution of the monomers about the centre of mass. It is desirable to disentangle the
radius of gyrationkRZ from the end-to-end distance. At the level of the distribution function
this can be achieved by including a global constraint (using the Dirac delta function) [1, 4]:

P(Ré):w/5<Ré—-§:gHsk-a)]ﬂs}ms} (1.5)
kl

wheres; = r; — r;_; are bond vectors linking the monomers located-atndr;_;1; gu

is a matrix to be determined. (For the continuous case see, e.g., [5]). An analogous
expression for the probability distribution of the end-to-end distaRgeis P(RZ) =

[ 8(Rg —r, —ro) P{s}d{s}, wherery andr, are, respectively, the position of the first and

of the last monomer. In this treatment the radius of gyration and the end-to-end distance
are regarded as more or less independent quantities.

In this paper we propose a new approach for the calculation of the radius of gyration that
treatsRg as a fundamental object, and is inspired by studies of membranes and surfaces.
In their study of lamellar fluid membranes Golubo@nd Lubensky [6] control fluctuations
in the total surface area by (a) introducing into the partition function a global constraint:

s(a- [ @) g =detgy (L6)
whereg;;(§) is the metric tensor, or (b) adding a surface tension term
Hi=o [ dege) L7

to the bending Hamiltonian. The latter case allows for fluctuations in the total surface
area and corresponds physically to a situation where exchange of molecules takes place
between the fluid membrane and a reservoir consisting of an ensemble of many surfaces (or
molecules), the chemical potential of the reservoir beiaga?, wherea? is the fixed area
occupied by each molecule [6]. The form (1.7) has been used to describe configurations of
a crystal-vapour interface at high temperatures. In that work the Monge representation of
gij 1s used together with a further approximation to reduce the reparametrization invariant
form (1.7) to a more familiar gradient of the height of the interfaeg2) [ d?x|Vh|? [7].

In order to apply equation (1.7) to polymers we note that Brownian motion (fractal
dimension two) can be characterized by an ‘area’ [8]. The fluctuations in this area can be
controlled by adding a term tr 7 to the original Hamiltoniari, describing the connectivity
of the chain. Herel is the inertia (or shape) tensor [9] whose eigenvalues give the size,

RE = (trT). (1.8)
Consequently the partition function for a Gaussian chain consistimglioks is [10]
2,0 = [ DIrlexpt-ptrT ~ o (L.9)

whereD[r] = ]'[Z:1 [T/_; dria, rie being thewth component of the position vector of tité
monomer. The preceding discussion suggestsZhat) is the canonical partition function
for a Gaussian chain. Use i4,(u) of a geometric invariant, ff, representing the size,
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is motivated by the reparametrization invariance of the form in equation (1.7). As recently
noted [11], there is no direct relationship (in the literature) between the Hamiltonian of a
Gaussian polymer chain and the canonical partition function. In [11] a canonical partition
function for a different model, the freely jointed chain, was constructed.

The distribution functionpeof{r;} o exp[—(3/213§0|) >, — N, whereT is the
centre of mass, has been shown in the context of ‘constraint-induced localization’ [12]
to encompass the extended and compact phases of a Gaussian chain. Since the distribution
function pcq{r;} is equivalent [10] to the form exp-utr7), the extended and compact
phases are expected to occur, and to depend on the ‘chemical potentidlis will be
shown below to be indeed the case.

To study the size of an-link polymer chain, we will evaluate the function

Cu(k, ) = (exp(—ptr T +ik - [, — 1)) (1.10)

in which the radius of gyratioR% and the end-to-end distand (obtainable from thek
term) are placed on an equal footing, in contrast to usual practice (equations (1.2)—(1.4)).
Thus, from equation (1.10), we obtain

d
RE = i In C,i (0, 1) =0 (1.11)

and
RE = —VZC,(k, 0)|k—0 (1.12)

with u =n, v = 1.

The aim of this paper is to calculate the siz&Z(and RZ) of a polymer chain, using
a discrete model (described in section 2) and equations (1.9)—-(1.12). We make extensive
use of the hypergeometric functioy (n, —m; c; —z?), wheren andm are integers. Here
72 = u/(4ny), wherey is the coefficient inH,. The radius of gyration for a Gaussian
chain is calculated in section 3, where we recover known results in thedim#t co of
2F1(n, —m; ¢; —z?), including the one obtained in [13] in connection with the shape of a
Gaussian chain. The excluded volume problem is taken up in section 4. Discretizing the
Fourier transform of the interactiofi/ ds ds’ §¢[r(s) — r(s")], due to Edwards [14], to a
form that is similar to the right-hand side of equation (1.1), we obtain the dimensionally
regularized parts ok2 and of RZ to first order ine = 4 — d, whered is the dimension
of space; our results agree with the earlier works of des Cloizeaux [8] and Duplantier [15]
which were based on Edwards’ continuous model [14].

The functionC, (0, 1) (equivalently, the partition functiorz, (1)) can also be used
to determine the asphericity parameter [9, 13] of a Gaussian polymer chain. This will be
pursued elsewhere.

2. The model

Consider an ideal, Gaussian chain consisting: dflentical links (or monomers) in d-
dimensional space. The monomers are labelled by an ihdex i < n), and the position
vector of theith monomer isr; = (ri1, ri2, ..., rig). FOr harmonic interactions between
nearest neighbours with mean separatipwe write the Hamiltonian of the system as

Ho=yy (mi—-mi?  y=1/Q0% (2.1)
i=1
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The properties of the chain can be determined from the inertia tehget
1 n
T = o2 Z(Fm — 1ja)(rig — jg)- (2.2)
i,j=1

By definition the radius of gyration is
RE = ((r—1)?) (2:3)

wherer = (1/n) Y_"_, r; is the centre of mass of the chain and the bracketslenote an
ensemble average. It can easily be shown that the forms (1.8) and (2.3) are equivalent.
The excluded volume interaction will be modelled according to Edwards [14] as

b S S
Hig = © f ds / ds' 8[r(s) — r(s)] (2.4)
2 Jo 0

whereS is the area of the Brownian chain [8]. Implicit in the double integral is the constraint
that |s — s'| is larger than some minimum length [8]. The model is valid fob > 0, i.e.
for binary repulsion between links. It is convenient to take the Fourier transform

8r(s) — (] = / ghlr@=re)] (2.5)
k

where fk = (1/(27r)d)fddk, ands, s’ are continuous variables along the chain. Upon
descritizing the pathr(s) — r,,r(’) — r,, the exponent in equation (2.5) becomes

ik - [r, — r,], which is the form appearing in equation (1.1). In a perturbative expansion
involving powers of the excluded volume interaction, we will obtain a term of the form
exp(—utr7 — Ho + ik - [r, — r,]) (See equation (4.5) below), the integral of which can

be easily obtained sinceIr andH, are quadratic in the coordinates. We then evaluate the
integrz:1|ffhkul>n0 du dv, where the cut off corresponds to the one employed in equation (2.4)
to control divergencies of the continuous theory. Alternatively, one could takesuire
overu andv, as is done in [16], in which the cut off plays no role. Our strategy here
of mixing up (so to speak) the continuous and discrete variables, viz, repla¢indoy

r, (s continuous;u discrete), and integrating ovet, is akin to the scheme devised by
Fixman [1], where discrete variables were replaced by continuous ones for the purpose of
diagonalizing a matrix. This led to an infinite set of eigenvalues and eigenfunctions, from
which the proper set was extracted at the end by noting that some of the elements in this
infinite set were redundant [1]. Here we show that the essential features of the problem,
viz, the dimensionally regularized form for the size, as well as the cut-off dependence, are
preserved when we discretize the continuous pdth for convenience.

3. Size of a Gaussian chain

3.1. The functiorC, (0, w)

In this section we calculate the radius of gyration of a Gaussian chain using equation (1.11)
which involvesC, (0, u) (equivalently,Z, () in equation (1.9)). The exponenttr 7 + Hg
in equation (1.9) is a quadratic formiMr, where the matrixv is given by

2y +a—>b i=j=12,...,n-1

y+a—->b i=j=n

M;j(n) = . (3.1)
—(y +b) li—jl=1
—b li—jl>1

wherea = u/n andb = u/n?.
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In order to eliminate the zero eigenvalue (corresponding to translational motion of
the centre of mass) from the determinant which results when we carry out the Gaussian
integration in equation (1.9), we keep one tail end of the chain fixed at the origin
(ro = 0). Hence the different factorsy2andy in the first and second line, respectively, in
equation (3.1). The result is

detM(p)77%?
n O’ = T in A A
a0, 1) [detM(O)]
By equation (A18) in the appendix;, (0, 1) can be written as

Co(0, 1) = Fi(n + 1, —n + 1; 3; —z3)] 792 2% = u/(4ny) (3.3)

(3.2)

where

1
Fin+1-n+L 3 -H)= —— [W1+22+ 2" — (V1+ 22— )* 3.4
2F1( 5 ) tnz 1—1—22[( ) ( )] (3.4)

by equation (A15). Thus the functiofi, (0, 1) is expressed in terms of a hypergeometric
function. This is our key result. Quantities derived frof} (0, 1), such asRé in
equation (1.11), and the thermodynamic limit { oo, £ — 0, with n¢? fixed), which
corresponds t@ — 0O, will depend on the properties of the functiefi(n + 1, —n +

1; g; —z%). This function is related [17,26] to the Jacobi polynom]%;ﬁ‘ff)(w), with

a =pf =1/2 andw = 1+ 2z2. The importance of orthogonal polynomials was recently
highlighted in the context of a ‘quasi-exactly solvable model’ [18]. As shown in that work,
the solutionys of the Schodinger equationHy = Ev, for a particularH, is a generating
function for an orthogonal sek,(E) obeying a three-term recursion relation. In the same
spirit, and in view of the intimate connection [14, 19] between the polymer problem and
guantum mechanics (and field theory), here we express the partition furGti@nu) in
terms of the (orthogonal) Jacobi polynomial whose argument: (y + n/4n)/y, is a
dimensionless ratio of the coefficients appearing in the Hamiltonian of equation (1.9).

We emphasize that the result in equation (3.3) iseaact expression foffinite n, in
contrast to the evaluation @f(R3) in equation (1.5), which can only be done approximately,
using, for example, the saddle-point method. This is the approximation used in [1, 4]. Diehl
and Eisenriegler [13] studied the functi@r (0, 1) in connection with the asphericity of a
Gaussian chain. Their method involved diagonalization of a quadratic form; they obtain a
closed form expression faf, (0, ) only in the limitn — oco. We recover their result as
follows. Sincez — 0 corresponds to the thermodynamic limit, we expand the right-hand
side of equation (3.4) up to first order #t= /L /n?), whereL = nt? is fixed. We note
that (1 +z)?" — e*2ViL asp — oo. Inserting this into equation (3.3), we find

C.© sinh(2/uL) /2

0.0 - (D)

in agreement with [13]. The form in equation (3.5) can also be obtained from the

hypergeometric series, equation (A23), by taking the limit- oo, with n¢? fixed (i.e.z <«

1), without use of the explicit form (3.4) for the hypergeometric function. It is the special

values of the arguments=n+1,b = —n+1, andc = 3/2 that give rise to the form (3.5).
The conditionz « 1 gives the relative importance of the two terpasr 7 and Hy in

the exponent of equation (1.9), singé o« u/y. Thus, ifz « 1, the properties of the

chain are determined primarily by the connectivity tekfy. It would be instructive to give

another interpretation of the varialje Settingu = «/¢2, wheret, is a microscopic length

associated with the centre of mass, ani dimensionless, we can expresss a ratio

z = Lefi/&c (3.6)

(3.5)
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where le(= a¥2¢) is the effective step length along the chain, d@gt= n%?¢.) is the
correlation length associated with the centre of mass. Therefore one finds, approximately,
0 < z < 1. Clearly& > to describes an ‘extended’ object, i.e. a Gaussian chain (or
random walk). The case ~ 1 corresponds to a ‘compact’ object, as we will show in the
next subsection.

3.2. Radius of gyration

The radius of gyration for a Gaussian chain is obtained from equations (1.11) and (3.3).
We obtain

dL
R: = 3,201+ D(n —1) (3.7)

where L = n¢?. Here we have used equation (A14) in the appendix, and
2F1(a, b;¢;0) =1 (3.8)

which is obvious, by the hypergeometric series (A23) or equations (A13) and (A15). All
the moments ofR3 can be obtained by differentiating repeatedly with respecttoin
particular, the fluctuations are given by

0
ARZ (1) = ((R%)?) — (R%)% = @Réw (3.9)

according to the linear response theorem, which gives

2d L?
AR%(0) = Zsﬁ(”z —1)(7+ 2n?) (3.10)
or
AR 4 9
®2)2 = & [1+ 21 1)] (3.11)

for the relative fluctuations in the limi¢ — 0. It is clear from equation (3.11) that the

relative fluctuations do not vanish in the limit of a very long ch@in— oo); they do vanish

in a high-dimensional spad@ — o0), in accord with a recent Monte Carlo study [20].
For finite © > 0 equations (1.11) and (3.3) give

2Fi(n+2,—n+ 2 g; _Z2)
P+ 1, —n+1; 3 —22)

R&(1) = RE(0) (3.12)
whereRZ(0) is given by equation (3.7). The ratio in equation (3.12) is a decreasing function
of z2, which indicates that the limi¢ — 1 corresponds to the collapsed phase of a polymer
chain. To show this we note that (equation (A25))

2Pin+ 1 —n+1 3 -2 = 4}211[(& + 1% — (V2-1?] (3.13)
and

5. .2 3 . 3
2Fi(n+2,—n+2;3; —z9) ;-1 = 1602 — 1) |:(\/§+ 1) (1 - ’18)

+(/2 -1 (1+ n38>] (3.14)
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which was obtained by differentiating both sides of equation (3.4), and seitiag 1.
Substituting equations (3.13) and (3.14) into (3.12), we get

R&(w) _ 1 k1

RZ0) | 3/(nv8) z=1n— oo.

This is in accord with the free energy estimates of [12], which suggestecR@mat n for
the extended conformatioa « 1) andR(z3 ~ O(1) for the collapsed conformatiofz ~ 1).

(3.15)

4. Polymer chain with excluded volume

4.1. Radius of gyration

In this section we calculate the radius of gyration of a polymer chain with excluded volume
interactions. A long, flexible polymer chain in a good solvent, with a short-ranged interaction
between links, is described by Edwards’ model [14]

L oL
Hint = b/ / ds ds’ 8[r(s) — 7(s")] 4.1)
0 |s—s"|>s0

where we include the cut off implicit in equation (2.4), and denotd.tthe contour size of
the chain. In the presence of interactions the functiQrD, 1) of equation (1.10) becomes

Ca(0, 1) = (& )y = N7 f D[rle "7 (4.2)
where’H = Ho + Hint, andN = [ D[r]e ™.
Expanding equation (4.2) to first order i, we get
Ca(0, j1) = (€Yo — (& Hint)o + (€77 )o(Hint)o (4.3)

where ()o denotes an average with respect to the Gaussian Hamiltddimgiven by
equation (2.1). Using the Fourier transform of théunction (equation (2.5)), the second
term on the right-hand side of equation (4.3) becomes

L L
(€ T o = bNo_l'/o / ds ds’/l;/e—Hu+lk-[r(.v)—r(s')] (4.4)
|s—s’|>s0

whereH,, = utr7 4+ Ho, andNp = [ D[r]e~ "o,

In order to evaluate the integral in equation (4.4) by the matrix methods developed here
we use a discrete representation of the path, as explained in sectign) 2> r,, r(s’) —
r,, and sek = uf?, s’ = v¢?. The last integral in equation (4.4) (including the normalization
factor V; %) can then be written as

I(k) = J\/'(;I/ D[r]exp(—utrT — Ho + ik - [r, — 7,]). (4.5)

We note thatutr? = a) ,, 3 — B>, > i Tialjes With @ = p/n and g = w/n?.
Substituting this form into equation (4.5) gives an exponential factorf&3p} r;,)?], which
can be conveniently written as

2 00
exp[ + ﬂ(;rm> } = (4np)? / _dv exp( - 4;1//2 —v Zr) (4.6)
We carry out the integral in equation (4.5), using

/ DX e X'AXHVIX _ 1n/2(detp)~1/2 exp(zl‘VTA*V) (4.7)
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whereA is ann x n non-singular matrix, andX is annr-component column vector. The

result is
a2 ((detA(uw) " _
— a2 F(y,k)
10 =y (Gonisr ) [Tow1e %, @9
The functionF is given by
1 _ 1 i
Fob) = 4 (1 -8y A,f) DU+ R+ Stk Y (4.9)
ij o
where
Q) = AT+ A —2471 (4.10)
() = Y (A= ALD (4.11)
i=1
andA(u) is a tridiagonal (or ©plitz) matrix:
2y +a i=j<n
-y li—jl=1
Aii(u) = 4.12
(W) ) ta i=j=n (4.12)
0 otherwise.
Integration oveny in equation (4.8) leads to
(k) = 1(0) exp(—k?G ) (4.13)
where
Gun) = S+ 12 (4.14)
ww (M) = Egttv 16C .
c is the coefficient ofy__, 2 in equation (4.9), and
detA (1) L\
1(0) = 1- A~ . 4.15
0 [dem(o)( ﬂ; g (4.15)

The right-hand side of equation (4.15) is another formde(0, ), given by equation (3.3).
Since def is given by equation (A22), we immediately obtain an expressior:for

1 _ 1 2Fi(n+1,—n+1; 35 —2?)
cE4<1—,3§:AU1>=4 R T (4.16)
,3 ij ﬁ 2Fl(n+17_n;§;_z)

Returning to the perturbation expansion of equation (4.3), we notéXhajo there can
be obtained from the second term by setting= 0. Equation (4.3) can therefore be written
as

C,(0, u) = Zo — bt* / / du dv I (k) + Zobe? / / dudvI(k)||,=0 (4.17)
k Ju—v|>ng k J|u—v|>ng

where Zy = (e #"7T)y and I (k) is given by equation (4.13). The radius of gyration is
obtained by differentiating equation (4.17) with respectitand settingu = O:

" d
R = RZ, — bt* fk k2 /| ‘ du dv e”“zG"”@Gw (4.18)
u—v|>ng

n=0
WhereR(z30 is the size of a Gaussian chain (i.e. one without excluded volume interactions).
It is, therefore, only necessary to expafig, to first order inu (o z2).
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Using the standard formula

djA
e (4.19)
|A]
(adj the adjoint) for the inverse, we obtain
1
Al=_— D, 1A,y u<v (4.20)

uv detA

for the matrixA,, of equation (4.12).D;. is the determinant of thé x k matrix given by
equation (A3), and the determinany,_, is obtained by deleting rows and columns 1uto
from the originaln x n matrix A of equation (4.12). The indicesandv in equation (4.20)
are interchanged for the case> v.

We can expressA;l in terms of hypergeometric functions by noting from
equations (A17) and (A22) thab, 1 = uy“ *Fi(—u + Lu + 1; 3 3;—z% and Ay =
vy oFi(—k, k+1; 3 3 —z?). Thus, foru < v, equation (4.20) becomes

-1
uv T

F 2F1( u+1 u+1

n

;3 -2 Fi(-n+v.n—v+ 1 129 (4.21)
where F, = ,Fi(—n,n + 1; 2 55 —z%). We note that the mversﬂw decomposes into a
product of two hypergeometric functions with different argument@ndv. The indicesu

andv in equation (4.21) are interchanged for the case v. Thus the inverse, given by
equation (4.21), is a symmetric matrix. Expanding the right-hand side of equation (4.21) to
0O(z?), and substituting into equation (4.10), we obtain

uv(W) = i [w — vl = gzzw —0)*(3n — 2w — w<)} (4.22)

where factorization of the extr@a — v) in the z2 term was achieved by neglecting terms of
order unity, andw- (w.) represents the larger(smaller) of the pairv). Similarly,

1
1 (0) = 2—(u —v)[2n+1—u —v] (4.23)
Y
which follows after some algebra, and, from equation (4.16),
n 2
_ 1- %20 41 1 2_ /(4 4.24
1602y [ 32 (D2 + )] 2° = p/(4ny) (4.24)

to first order inz2. As in the calculation og,,, we will neglect the number 1 in the square
bracket of equation (4.23), since it is of little consequence. Combination of equations (4.14)
and (4.22)—(4.24) yields

d
7Guu

1
= (u— 033 —2w. —w.)
du

i—o  l12ny? — v)?[2n — u — v]%. (4.25)

1
+16,12 2

SinceG,,(u = 0) = (1/4y)|u — v|, the k-integral in equation (4.18) evaluates to [21]

d 74/2
/ddkk: exp<—|u - |> =_ 02y — |72 (4.26)

(2m)d 2 (2m)d
so that the size, given by equation (4.18), becomes
d d 2
RE = RZ b 027N+ D) (4.27)

G 27 2n)d
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where
4L% 1-d/2 2
“3 f / dudv|u —v|™ (u—v)°(3n — 2w —w.) (4.28)
3n |lu—v|>ng
= — / / du dv ju — v ™52 — v)?(2n — u — v)2. (4.29)
lu—v|>ng

The integrals/; and I; can be written in the form

T:m/ / du dv |u — v|*vP. (4.30)
0 |lu—v|>ng

Making a change of variables = u — v, y = v, and taking the cut-off into account, we
haveT = men”O dx x® [ dy yf. In this form T can be evaluated using the beta function
B(u, v) defined by [21]

/ (u —x)* I tdx = u* " IB(u, v) Reu > 0, Rev > 0. (4.31)
0

It is convenient to split up the integral g5 — fj — ”°, which leads to

n“tF2p 1L,B+2) — ——— / dx Frl (432
=511 («+1,84+2 511 x*(n — x) (4.32)
Use of the properties of the beta function [21] simplifies the sums of the forim
8 ds

I = ——L%n™ A 4.33
1 3L inds + A1(no) (4.33)
I = 2L%n™ cHY SR Az(no) (4.34)

dods dads '

whered, = k —d/2 andA;, A, are cut-off dependent terms.
Substituting equations (4.33) and (4.34) into (4.27), and redefining the parameters
€2 — (?/2,b — b/2, we obtain the dimensionally regularized partR¥:

Ld Z 4 6
RZ=""|1 1 — 4.

5= 6 [ T e—a/2@E-d/2 < Tazap T @—da6- d/z))} (435
wherez = bL?4/2(2r)~/2, and the sum of the cut-off dependent terms is

14 1 26 1
A=A+ A= Lnl d/2|: 2 d/2 _ 3 d/2+0( 4— d/Z)]

32-4/27° 33-4d/20
X0 = no/n. (4.36)

The e-expansion { = 4 — d) of R follows:

R%/RZ, =1+ g (1 — ;}) (4.37)
in agreement with [8, 15]. In [15] Duplantier calculates partition functions, which exhibit a
divergence of the forrvc1 2 The radius of gyration is given by a ratio of these partition
functions, and this dlvergence cancels out. This is due to factorization oflex]) F] in

the partition function, where is the local free energy associated with the short distance
divergences [8, 15]. Here too the divergence cancels out. We calculate the physical quantity,
Ré, directly, as a derivative of the functiofexp(—uw tr7)) (equation (4.2)), and find in
equations (4.35) and (4.36) that the radius of gyration has no ‘ultra-violet’ divergence in
the regiond < 4 where the excluded volume interaction is relevant. This cancellation of
divergences is closely tied with the nature of the perturbation expansion in equation (4.3).
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4.2. End-to-end distance

The ratio R/RZ is universal [22]. We therefore have to computg to complete our
analysis. Consider, therefore, the (discretized) Fourier transforrigexpe, — «,]) and
expand it to first order in powers 6{;y; as in equation (4.3), obtaining

(eiq-[wu—wu]) _ (eiq'[x"‘”””]>o - b€4/ / dr dp((_:,iq-[acu—xu]-kik-[:c,—w,;]>O
k

+be(grlmmly / / dr dp(ektz=aly,, (4.38)
k
It is instructive to look upon the averages in equation (4.38) as special cases of

Co(k,q; n) = (exXp(—ptr 7 +ik - [z, — z,] +iq - [z, — z.]))o (4.39)

which evaluates to

Cn(ka q; /'L) = ZO exrx_szrp - qZGuv + %k : unv;rp) (440)
whereZy = (exp(—u tr 7))o, and
_ _ _ _ 1
PMU:’P(M) = Aurl + Avpl - Aupl - Avrl + E uv[’[" (441)

The integrand in the second term on the right-hand side of equation (4.88)#4s q; 0);
the integrand in the third term i§, (k, 0; 0). We also find

Puv;rp(o) = %(gur + 8vp — 8up — gur) (442)

by the definition (4.10) fog,,, and noting that—'t,,t.,|,—0 = O, by equation (4.24).

We digress briefly here for a look at the tethered membranes [23]. The expression for
P,..-»(0) above is to be compared with an analogous expression in the study of tethered
membranes involving the Coulomb potent@h (x — «’) in the ‘internal’ D-dimensional
space (equation (3.8) of [23]):

Ap(xr, zz; @, x') = Cp(x1 — ) + Cp(xz — ') — Cp(x1 — ') — Cp(x2 — ). (4.43)

D = 1 for polymers andD = 2 for surfaces. It is clear from equations (4.42) and (4.43)
that we can identify (in the sense described belgy)0) with (4/K)Cp_1(x, — x,). One
can show that the term tr 7 defined by equation (2.2) introduces connections between a
particular monomer and other monomers that are not its nearest neighbours along the chain.
Equivalently, one can say that the effect;ofin g,,(w) is to introduce correlations which
lead to the collapse of the chain, as we saw at the end of section 3. The generalization
of Cp(x) is effected by increasing the value 6f from 1. SinceCp(z) o« |z|>~? [23],
we see that, for < D < 2, Cp(x) corresponds to objects of smaller overall size than
those described b¢',_,(x), for the same given contour size. More precisely, the fractal
dimension,di = 2D /(2 — D), is two for the random walk) = 1) and infinite for a
surface D = 2) [23]. For D > 1, each ‘monomer’ in the membrane is connected to more
neighbours than is the case for the linear topoléyy= 1. Thereforeg,,(1), u > 0, is to
be identified withCp(x), D > 1.

SubstitutingC, (k, g; 0) and C, (k, 0; 0) from equation (4.40) into equation (4.38), and
taking —Vq2|q:0, we obtain the end-to-end distance between monomensd v as

d
B, = G0 +b¢* [ ardp PO [ ke W00 (4.44)
k
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where we suppressed the indices®p.,,(0). The end-to-end distance for the whole chain
is obtained by setting = n, v = 1, for which

1
Pnl;rp(o) = 5["‘ - P| + n((gnr - 8np)]~ (445)

The terms involving the Kronecker deltas do not contribute. A-irgegral in equation (4.44)
was evaluated in equation (4.26). This leads to

n d3 no
/ drdp|r — p| ™2 = 2(n — / dx x“(n — x)) (4.46)
| 0

r—pl>ng d2d3
whered; = k — d/2. Rescalingg? — ¢2/2, b — b/2, we finally obtain
RZ 4
ZE 14 4.47
RZ, (2—d/2)(3-d/2) (4.47)

wherez = bL*4/2(27)~4/2, and R%, = Ld is the end-to-end distance of a Gaussian chain.
The cut-off dependence given by the integral on the right-hand side of equation (4.46) has
the structure obtained in [15]. Theexpansion of equation (4.47) is

R2 2 €

—=1+-(1-2)z. 4.48

RZ, + € ( 2) ‘ (4.48)
This, combined with the corresponding equation (4.37)R@y gives

RZ 1 z

2 ="(1-= 4.49

RZ 6 ( 12) ( )

which has been obtained in [8] and [15], and also by field-theoretic methods [24].

5. Conclusion

The usual approach in theoretical studies of long, flexible, polymers in a good solvent is
to adopt either a discrete model or a continuous one. In the discrete approach, exemplified
by [16, 22], the non-interacting part of the Hamiltonian, ensuring chain connectedness, is
HISC = » S (r; — mi-1)? (equation (2.1)); the associated (discrete) excluded volume
interaction is modelled according to Domb [22]HdS¢ = [l + B&(ri — r)).

On the other hand, the continuous approach, exemplified by [5,8,15], tHgES =

(d/2¢) fOL ds[dr(s)/ds]? and the interaction part a&SS™ = b [ dsds’§¢[r(s) — r(s")].

int
In the present paper we have adopted a hybrid approach consistingdistrate non-
interacting chain partH, = utr7 + H9C (equation (1.9)), of the Hamiltonian, and a
continuousexcluded volume interactior{$™, due to Edwards [14].

By introducing the termutr7 we were able to construct the (canonical) partition
function for a discrete Gaussian chain. We express the result in terms of a hypergeometric
function, which is subsequently used extensively throughout the paper. Using the model
of Edwards for the excluded volume interaction, we derived dimensionally regularized
expressions foRZ and RZ, together with the cut-off dependence of [15]. In other words,
the ‘renormalization’ of a discrete chain (equation (1.9)) and of a continuous one (modelled
by HE™), due to the excluded volume interacti(f$™, turns out to be the same. This
seems to be consistent with the finding in [16], viz, that one can derive from a discrete
chain model results which are identical to those derived by sophisticated and elaborate
renormalization techniques based on a continuous chain model.

The technique developed in this paper can be used to study the polymerdapdtiiat,
and the shape of a Gaussian chain. The latter will be pursued in a subsequent publication.
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Appendix. Evaluation of determinants

In this appendix we evaluate the determinant of the matridgs.) (equation (3.1)) and

A;; () (equation (4.12)), and express the results in terms of the hypergeometric function.
M;;(n) can be diagonalized [13]. However, that approach only leads to a closed form
expression for de¥l in the limitn — oco. By using recursion relations for the determinants,
as well as differentiation formulae, we derive closed form expressions fof ded def;

they are Jacobi polynomials. Let us decomposeMiénto tridiagonal forms so as to
emphasize the random walk nature of the problem. We have

detM, = detA, —b Y my" " D,_1. (A1)

m=1

This can be shown by evaluating dé} for small » and generalizing the results. Hefe
is a tridiagonal matrix defined by

2y +a i=j=12,...,.n-1

Yy +a i=j=n
A=y i—jl=1 (A2)
0 otherwise

and D,, denotes the determinant of the x m Jacobi matrix

2y +a i=j

Djj =4 -v li—jl=1 (A3)
0 otherwise.

It is straightforward to show that
detA, = (y + a)Dy_1(x) — y*D,_a(x) x=2y+a (A4)

so that all we need for the evaluation of t8kin (Al) is D, (x), which obeys the recursion
relation

Dm (x) - XDm—l(x) - Vsz—z(X) (AS)
with the boundary condition®y = 1, D_; = Ok > 0). D,,(x) can be written as [25]
ym+l 1 1
Dy (x) = ———— (VT =" A6
= (A6)
where
1
vy = Z—(x +/x2 —4y?) (A7)
Y

are the roots of the quadratic equatioh— vx 4+ y? = 0.
Using the form (A6), the sum in (Al) becomes

n

n B y a n a n ]
n mDm_ — _ m_ oy . A8
mXZ:lmy . /)62_4),2[1”’814n;:l%r v 8v,m2=:1v (A8)
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Since
L vty
m _ A
m;v T (A9)
we find
vy — 5or Z vl = :L)z[nv’”’2 (n+ D+ v, (A10)

and an analogous expression for. Using these in the square bracket of equation (A8),
and noting that, v_ = 1, the sum becomes

" n
Z myn_mDmfl = ;[(Cl + V)anl - ganl - yan72]- (All)

Combining this with defA, given by equation (A4) leads to
detM, = V' D,_1(x)  x =2y +a. (A12)
n

Let us express dét in terms of the hypergeometric function. We note a special case
of the hypergeometric function [26]

sFi(—n,n; 3 =28 = (V14224 0% + (V1+ 22— )71 (A13)
Differentiating both sides of equation (A13) with respectfo using the property [26]

d b

ar 2Fi(a,b;c; x) = % 2Fia+1,b+1;,c+ 1 x) (A14)
we obtain
2P +1,-n+1 3 2% = [(\/1+z +2)" —(V1+:2—-2)*"]  (A15)

4nz/1

which is related toD, in equation (A6). We show this as follows. Singe= 2y +a
(equation (A4)), and = u/n, we findx £ /x2 — 4y = 2y (z £ /1 + z2)?, where we have
usedz? = u/(4ny). Substituting into equation (A6), we obtain

n—1
14 2n 2n
D,_1(2) = ————[(V14+ 224+ )" - (V1+ 22— 2)7]. (A16)
421422
Comparing with equation (A15), we conclude
D, 1) =ny" oFi(—n+1n+1 3; —z%). (A17)

Substituting into equation (A12), we obtain
detM,(n) = y"2Fi(—n+Ln+1 3:—2%  *=p/(ny).  (Al8)

Apart from the factorl'(3/2)T"'(n)/ T'(n + 1/2), the right-hand side of equation (A18) is
the Jacobi polynomialP™>/? (1 + 272) [21]. It is also equivalent to the Gegenbauer
polynomial (1/n)C* (1 + 2z?) [21].
DetA can also be expressed as a hypergeometric function.  Substitution of
equation (Al7) into (A4) gives
detd, = y"[n(1+4z%) sFi(—n+Ln+1 3 —2%) — (n — D) 2Fi(—n + 2,n; 3; —2%)].
(A19)
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The right-hand side can be simplified by using the form (A15) for the hypergeometric
function and noting that the second hypergeometric function in the square bracket of
equation (A19) can be obtained from the first by the replacementn — 1. The result is

n

14 2n+1 2n+1
detd, = ———[V1+ 22+ 27"+ (V1+z°—72) . A20
zm[ ] (A20)
Comparison with the form
1
Fi(-n,n+1L % —w=—"[(V1+w+/u)?+1+w+Jw)y 21
2F1(—n,n > ) Zm[( Vw) ( Vw) ]
lw| <1 (A21)
([27], equation (7.3.10)) leads to
detA, = y" o Fi(—n,n +1; 3; —z%) (A22)

since(V1+w+ Jw) = V1+w - Jw) ™t
Finally, we list several useful properties of the hypergeometric function. Shace 1
is a negative integerFi(—n + 1,n + 1, g; —z?) is a polynomial of degrea — 1; it is
(except for a constant) the Jacobi polynom#g'y” (x), with @ = g = 1 andx = 1+ 272
[21]. Forz < 1 the hypergeometric function can be expressed as a (convergent) power
series [6, 27]
o k
(@i z
Fi(a,b;c;z) = o
2F1(a, b; c; z) ; O Kl
where (@), = I'la + k)/T (@) = a(e+1)...(« + k — 1),k = 1,2,..., denotes the
Pochhammer symbol. It follows thatFi(a, b;c;0) = 1. We also note the symmetry
2F1(a, b; ¢; 2) = 2F1(b, a; ¢; z) with respect to interchange of the argumemtandb.
In the limit n — oco(z < 1) one can use the hypergeometric series in equation (A23) to
obtain

Izl <1 (A23)

2Fi(—n,n +1; 3; —z%) — cosh(2nz)
sinh(2nz)
N

. 3. 2

n— oo (A24)
after a bit of algebra. By equation (A15),

W2+ ™ [1 1 ]
A/ W2+ 14|

2Fi(-n+1n+13;-1) (A25)
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