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Abstract. Guided by an approach used in the study of membranes we construct the partition
function for a discrete Gaussian chain model of polymers. The Hamiltonian isH = H0+µ tr T ,
whereH0 describes the chain connectivity,T is the inertia tensor, which gives the shape
and size of the polymer chain, and tr denotes the trace. Here we consider only the size,
R2

G = 〈tr T 〉, which is obtained from the partition function by differentiating with respect to the
conjugate variableµ. The partition function is expressed in terms of the hypergeometric function

2F1(n+1,−n+1; 3
2 ;−z2), an orthogonal polynomial, wheren is the number of monomers and

z2 is the ratio ofµ and the coefficient inH0. The limit z→ 0 corresponds to the random coil,
while the limit z→ 1 describes a compact object. We also study the excluded volume problem
by discretizing Edwards’ continuous self-avoidance term. We obtain dimensionally regularized
expressions for the radius of gyration and the end-to-end distance. The short distance cut-off
dependence of the continuous model is reproduced.

1. Introduction

A commonly used measure of the size of a flexible polymer chain in solution is its end-to-
end distanceRE. However, it was recognized long ago [1] that the radius of gyrationRG

is a better measure of the size thanRE. Indeed the structure (or form) factor

G(k) = 1

n

〈 n∑
`,m=1

exp(ik · (r` − rm))
〉

|k| = (4π/λ) sin(θ/2) (1.1)

which is proportional to the intensity of scattered radiation [2, 3], is determined by the radius
of gyration through the relationG(k) = nf (|k|RG) [2, 3]. Heren is the number of links in
the chain,θ is the scattering angle, andλ is the wavelength of the radiation.

Despite the realization thatRG is more fundamental thanRE, most theoretical studies
take the end-to-end distance (which is not accessible to experiment) as a central object,
and determine the radius of gyration on that basis. This is due in part to the fact that the
end-to-end distance of a chain (or segment thereof) has a Gaussian distribution when the
number of links (or monomers) is sufficiently large; the distribution ofRG is not known
[1]. In this approach one calculates the Fourier transform

C(k; x1, x2) = 〈eik·[r(x1)−r(x2)]〉 (1.2)

of the probability distributionP([r(x1)− r(x2)] − ρ) for two links located at positionsx1

andx2, respectively, along the chain, to be separated by a distanceρ. The braces〈 〉 denote
an average, and the position in the embedding space of monomeri is denoted byr(xi).
The segment end-to-end distance

〈|r(x1)− r(x2)|2〉 = −[∇2
kC]|k=0 (1.3)
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is then used to calculate the radius of gyration,

R2
G =

1

L

∫ ∫
dx1 dx2〈[r(x1)− r(x2)]

2〉 (1.4)

whereL is the contour length of the chain. Thus calculation ofR2
G is, in a sense, based on

the end-to-end distance〈|r(x1)−r(x2)|2〉, and clouds the correct interpretation thatR2
G gives

the distribution of the monomers about the centre of mass. It is desirable to disentangle the
radius of gyrationR2

G from the end-to-end distance. At the level of the distribution function
this can be achieved by including a global constraint (using the Dirac delta function) [1, 4]:

P(R2
G) =

∫
δ

(
R2

G−
∑
kl

gklsk · sl
)
P {s} d{s} (1.5)

wheresi ≡ ri − ri−1 are bond vectors linking the monomers located atri and ri−1; gkl
is a matrix to be determined. (For the continuous case see, e.g., [5]). An analogous
expression for the probability distribution of the end-to-end distanceR2

E is P(R2
E) =∫

δ(RE− rn− r0)P {s} d{s}, wherer0 andrn are, respectively, the position of the first and
of the last monomer. In this treatment the radius of gyration and the end-to-end distance
are regarded as more or less independent quantities.

In this paper we propose a new approach for the calculation of the radius of gyration that
treatsRG as a fundamental object, and is inspired by studies of membranes and surfaces.
In their study of lamellar fluid membranes Golubović and Lubensky [6] control fluctuations
in the total surface areaA by (a) introducing into the partition function a global constraint:

δ

(
A−

∫
d2ξg1/2(ξ)

)
g = detgij (1.6)

wheregij (ξ) is the metric tensor, or (b) adding a surface tension term

HA = σ
∫

d2ξg1/2(ξ) (1.7)

to the bending Hamiltonian. The latter case allows for fluctuations in the total surface
area and corresponds physically to a situation where exchange of molecules takes place
between the fluid membrane and a reservoir consisting of an ensemble of many surfaces (or
molecules), the chemical potential of the reservoir being−σ/a2, wherea2 is the fixed area
occupied by each molecule [6]. The form (1.7) has been used to describe configurations of
a crystal–vapour interface at high temperatures. In that work the Monge representation of
gij is used together with a further approximation to reduce the reparametrization invariant
form (1.7) to a more familiar gradient of the height of the interface,(σ/2)

∫
d2x|∇h|2 [7].

In order to apply equation (1.7) to polymers we note that Brownian motion (fractal
dimension two) can be characterized by an ‘area’ [8]. The fluctuations in this area can be
controlled by adding a termµ tr T to the original HamiltonianH0 describing the connectivity
of the chain. HereT is the inertia (or shape) tensor [9] whose eigenvalues give the size,

R2
G = 〈tr T 〉. (1.8)

Consequently the partition function for a Gaussian chain consisting ofn links is [10]

Zn(µ) =
∫
D[r] exp(−µ tr T −H0) (1.9)

whereD[r] =∏d
α=1

∏n
i=1 driα, riα being theαth component of the position vector of theith

monomer. The preceding discussion suggests thatZn(µ) is the canonical partition function
for a Gaussian chain. Use inZn(µ) of a geometric invariant, trT , representing the size,
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is motivated by the reparametrization invariance of the form in equation (1.7). As recently
noted [11], there is no direct relationship (in the literature) between the Hamiltonian of a
Gaussian polymer chain and the canonical partition function. In [11] a canonical partition
function for a different model, the freely jointed chain, was constructed.

The distribution functionρcol{ri} ∝ exp[−(3/2b̃2
col)

∑n
i=1(ri − r̄)2], where r̄ is the

centre of mass, has been shown in the context of ‘constraint-induced localization’ [12]
to encompass the extended and compact phases of a Gaussian chain. Since the distribution
function ρcol{ri} is equivalent [10] to the form exp(−µ tr T ), the extended and compact
phases are expected to occur, and to depend on the ‘chemical potential’µ; this will be
shown below to be indeed the case.

To study the size of ann-link polymer chain, we will evaluate the function

Cn(k, µ) = 〈exp(−µ tr T + ik · [ru − rv])〉 (1.10)

in which the radius of gyrationR2
G and the end-to-end distanceR2

E (obtainable from thek
term) are placed on an equal footing, in contrast to usual practice (equations (1.2)–(1.4)).
Thus, from equation (1.10), we obtain

R2
G = −

∂

∂µ
lnCn(0, µ)|µ=0 (1.11)

and

R2
E = −∇2

kCn(k, 0)|k=0 (1.12)

with u = n, v = 1.
The aim of this paper is to calculate the size (R2

G andR2
E) of a polymer chain, using

a discrete model (described in section 2) and equations (1.9)–(1.12). We make extensive
use of the hypergeometric function2F1(n,−m; c;−z2), wheren andm are integers. Here
z2 = µ/(4nγ ), whereγ is the coefficient inH0. The radius of gyration for a Gaussian
chain is calculated in section 3, where we recover known results in the limitn → ∞ of
2F1(n,−m; c;−z2), including the one obtained in [13] in connection with the shape of a
Gaussian chain. The excluded volume problem is taken up in section 4. Discretizing the
Fourier transform of the interaction

∫∫
ds ds ′ δd [r(s) − r(s ′)], due to Edwards [14], to a

form that is similar to the right-hand side of equation (1.1), we obtain the dimensionally
regularized parts ofR2

G and ofR2
E to first order inε = 4− d, whered is the dimension

of space; our results agree with the earlier works of des Cloizeaux [8] and Duplantier [15]
which were based on Edwards’ continuous model [14].

The functionCn(0, µ) (equivalently, the partition functionZn(µ)) can also be used
to determine the asphericity parameter [9, 13] of a Gaussian polymer chain. This will be
pursued elsewhere.

2. The model

Consider an ideal, Gaussian chain consisting ofn identical links (or monomers) in ad-
dimensional space. The monomers are labelled by an indexi(16 i 6 n), and the position
vector of theith monomer isri = (ri1, ri2, . . . , rid). For harmonic interactions between
nearest neighbours with mean separation`, we write the Hamiltonian of the system as

H0 = γ
n∑
i=1

(ri − ri−1)
2 γ = 1/(2`)2. (2.1)
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The properties of the chain can be determined from the inertia tensorT [9]

Tαβ = 1

2n2

n∑
i,j=1

(riα − rjα)(riβ − rjβ). (2.2)

By definition the radius of gyration is

R2
G = 〈(r − r̄)2〉 (2.3)

where r̄ = (1/n)∑n
i=1 ri is the centre of mass of the chain and the brackets〈 〉 denote an

ensemble average. It can easily be shown that the forms (1.8) and (2.3) are equivalent.
The excluded volume interaction will be modelled according to Edwards [14] as

Hint = b

2

∫ S

0
ds
∫ S

0
ds ′ δd [r(s)− r(s ′)] (2.4)

whereS is the area of the Brownian chain [8]. Implicit in the double integral is the constraint
that |s − s ′| is larger than some minimum lengths0 [8]. The model is valid forb > 0, i.e.
for binary repulsion between links. It is convenient to take the Fourier transform

δd [r(s)− r(s ′)] =
∫
k

eik·[r(s)−r(s ′)] (2.5)

where
∫
k ≡ (1/(2π)d)

∫
ddk, and s, s ′ are continuous variables along the chain. Upon

descritizing the pathr(s) → ru, r(s
′) → rv, the exponent in equation (2.5) becomes

ik · [ru − rv], which is the form appearing in equation (1.1). In a perturbative expansion
involving powers of the excluded volume interaction, we will obtain a term of the form
exp(−µ tr T − H0 + ik · [ru − rv]) (see equation (4.5) below), the integral of which can
be easily obtained since trT andH0 are quadratic in the coordinates. We then evaluate the
integral

∫∫
|u−v|>n0

du dv, where the cut off corresponds to the one employed in equation (2.4)
to control divergencies of the continuous theory. Alternatively, one could take thesum
over u and v, as is done in [16], in which the cut off plays no role. Our strategy here
of mixing up (so to speak) the continuous and discrete variables, viz, replacingr(s) by
ru (s continuous;u discrete), and integrating overu, is akin to the scheme devised by
Fixman [1], where discrete variables were replaced by continuous ones for the purpose of
diagonalizing a matrix. This led to an infinite set of eigenvalues and eigenfunctions, from
which the proper set was extracted at the end by noting that some of the elements in this
infinite set were redundant [1]. Here we show that the essential features of the problem,
viz, the dimensionally regularized form for the size, as well as the cut-off dependence, are
preserved when we discretize the continuous pathr(s) for convenience.

3. Size of a Gaussian chain

3.1. The functionCn(0, µ)

In this section we calculate the radius of gyration of a Gaussian chain using equation (1.11)
which involvesCn(0, µ) (equivalently,Zn(µ) in equation (1.9)). The exponentµ tr T +H0

in equation (1.9) is a quadratic formrTMr, where the matrixM is given by

Mij (µ) =


2γ + a − b i = j = 1, 2, . . . , n− 1

γ + a − b i = j = n
−(γ + b) |i − j | = 1

−b |i − j | > 1

(3.1)

wherea = µ/n andb = µ/n2.
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In order to eliminate the zero eigenvalue (corresponding to translational motion of
the centre of mass) from the determinant which results when we carry out the Gaussian
integration in equation (1.9), we keep one tail end of the chain fixed at the origin
(r0 = 0). Hence the different factors 2γ andγ in the first and second line, respectively, in
equation (3.1). The result is

Cn(0, µ) =
[

detM(µ)
detM(0)

]−d/2
. (3.2)

By equation (A18) in the appendix,Cn(0, µ) can be written as

Cn(0, µ) = [2F1(n+ 1,−n+ 1; 3
2;−z2)]−d/2 z2 = µ/(4nγ ) (3.3)

where

2F1(n+ 1,−n+ 1; 3
2;−z2) = 1

4nz
√

1+ z2
[(
√

1+ z2+ z)2n − (
√

1+ z2− z)2n] (3.4)

by equation (A15). Thus the functionCn(0, µ) is expressed in terms of a hypergeometric
function. This is our key result. Quantities derived fromCn(0, µ), such asR2

G in
equation (1.11), and the thermodynamic limit (n → ∞, ` → 0, with n`2 fixed), which
corresponds toz → 0, will depend on the properties of the function2F1(n + 1,−n +
1; 3

2;−z2). This function is related [17, 26] to the Jacobi polynomialP (α,β)n−1 (w), with
α = β = 1/2 andw = 1+ 2z2. The importance of orthogonal polynomials was recently
highlighted in the context of a ‘quasi-exactly solvable model’ [18]. As shown in that work,
the solutionψ of the Schr̈odinger equation,Hψ = Eψ , for a particularH , is a generating
function for an orthogonal setPn(E) obeying a three-term recursion relation. In the same
spirit, and in view of the intimate connection [14, 19] between the polymer problem and
quantum mechanics (and field theory), here we express the partition functionCn(0, µ) in
terms of the (orthogonal) Jacobi polynomial whose argument,w = (γ + µ/4n)/γ , is a
dimensionless ratio of the coefficients appearing in the Hamiltonian of equation (1.9).

We emphasize that the result in equation (3.3) is anexact expression forfinite n, in
contrast to the evaluation ofP(R2

G) in equation (1.5), which can only be done approximately,
using, for example, the saddle-point method. This is the approximation used in [1, 4]. Diehl
and Eisenriegler [13] studied the functionCn(0, µ) in connection with the asphericity of a
Gaussian chain. Their method involved diagonalization of a quadratic form; they obtain a
closed form expression forCn(0, µ) only in the limit n→ ∞. We recover their result as
follows. Sincez → 0 corresponds to the thermodynamic limit, we expand the right-hand
side of equation (3.4) up to first order inz(=

√
µL/n2), whereL = n`2 is fixed. We note

that (1± z)2n→ e±2
√
µL asn→∞. Inserting this into equation (3.3), we find

Cn(0, µ) =
(

sinh(2
√
µL)

2
√
µL

)−d/2
(3.5)

in agreement with [13]. The form in equation (3.5) can also be obtained from the
hypergeometric series, equation (A23), by taking the limitn→∞, with n`2 fixed (i.e.z �
1), without use of the explicit form (3.4) for the hypergeometric function. It is the special
values of the argumentsa = n+1, b = −n+1, andc = 3/2 that give rise to the form (3.5).

The conditionz � 1 gives the relative importance of the two termsµ tr T andH0 in
the exponent of equation (1.9), sincez2 ∝ µ/γ . Thus, if z � 1, the properties of the
chain are determined primarily by the connectivity termH0. It would be instructive to give
another interpretation of the variablez. Settingµ = α/`2

c, where`c is a microscopic length
associated with the centre of mass, andα is dimensionless, we can expressz as a ratio

z = `eff/ξc (3.6)
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where `eff(= α1/2`) is the effective step length along the chain, andξc(= n1/2`c) is the
correlation length associated with the centre of mass. Therefore one finds, approximately,
0 < z < 1. Clearly ξc � `eff describes an ‘extended’ object, i.e. a Gaussian chain (or
random walk). The casez ≈ 1 corresponds to a ‘compact’ object, as we will show in the
next subsection.

3.2. Radius of gyration

The radius of gyration for a Gaussian chain is obtained from equations (1.11) and (3.3).
We obtain

R2
G =

d

3

L

n2
(n+ 1)(n− 1) (3.7)

whereL = n`2. Here we have used equation (A14) in the appendix, and

2F1(a, b; c; 0) = 1 (3.8)

which is obvious, by the hypergeometric series (A23) or equations (A13) and (A15). All
the moments ofR2

G can be obtained by differentiating repeatedly with respect toµ. In
particular, the fluctuations are given by

1R2
G(µ) = 〈(R2

G)
2〉 − 〈R2

G〉2 =
∂

∂µ
R2

G(µ) (3.9)

according to the linear response theorem, which gives

1R2
G(0) =

2d

45

L2

n4
(n2− 1)(7+ 2n2) (3.10)

or

1R2
G

(R2
G)

2
= 4

5d

[
1+ 9

2(n2− 1)

]
(3.11)

for the relative fluctuations in the limitz → 0. It is clear from equation (3.11) that the
relative fluctuations do not vanish in the limit of a very long chain(n→∞); they do vanish
in a high-dimensional space(d →∞), in accord with a recent Monte Carlo study [20].

For finiteµ > 0 equations (1.11) and (3.3) give

R2
G(µ) = R2

G(0)
2F1(n+ 2,−n+ 2; 5

2;−z2)

2F1(n+ 1,−n+ 1; 3
2;−z2)

(3.12)

whereR2
G(0) is given by equation (3.7). The ratio in equation (3.12) is a decreasing function

of z2, which indicates that the limitz→ 1 corresponds to the collapsed phase of a polymer
chain. To show this we note that (equation (A25))

2F1(n+ 1,−n+ 1; 3
2;−z2)|z=1 = 1

4
√

2n
[(
√

2+ 1)2n − (
√

2− 1)2n] (3.13)

and

2F1(n+ 2,−n+ 2; 5
2;−z2)|z=1 = 3

16(n2− 1)

[
(
√

2+ 1)2n
(

1− 3

n
√

8

)
+(
√

2− 1)2n
(

1+ 3

n
√

8

)]
(3.14)
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which was obtained by differentiating both sides of equation (3.4), and settingz = 1.
Substituting equations (3.13) and (3.14) into (3.12), we get

R2
G(µ)

R2
G(0)

=
{

1 z � 1

3/(n
√

8) z = 1, n→∞.
(3.15)

This is in accord with the free energy estimates of [12], which suggested thatR2
G ∼ n for

the extended conformation(z � 1) andR2
G ∼ O(1) for the collapsed conformation(z ≈ 1).

4. Polymer chain with excluded volume

4.1. Radius of gyration

In this section we calculate the radius of gyration of a polymer chain with excluded volume
interactions. A long, flexible polymer chain in a good solvent, with a short-ranged interaction
between links, is described by Edwards’ model [14]

Hint = b
∫ L

0

∫ L

|s−s ′|>s0
ds ds ′ δd [r(s)− r(s ′)] (4.1)

where we include the cut off implicit in equation (2.4), and denote byL the contour size of
the chain. In the presence of interactions the functionCn(0, µ) of equation (1.10) becomes

Cn(0, µ) = 〈e−µ tr T 〉H ≡ N−1
∫
D[r] e−µ tr T (4.2)

whereH = H0+Hint, andN = ∫ D[r] e−H.
Expanding equation (4.2) to first order inHint, we get

Cn(0, µ) = 〈e−µ tr T 〉0− 〈e−µ tr T Hint〉0+ 〈e−µ tr T 〉0〈Hint〉0 (4.3)

where 〈〉0 denotes an average with respect to the Gaussian HamiltonianH0 given by
equation (2.1). Using the Fourier transform of theδ-function (equation (2.5)), the second
term on the right-hand side of equation (4.3) becomes

〈e−µ tr T Hint〉0 = bN−1
0

∫ L

0

∫ L

|s−s ′|>s0
ds ds ′

∫
k

∫
e−Hµ+ik·[r(s)−r(s ′)] (4.4)

whereHµ = µ tr T +H0, andN0 =
∫
D[r] e−H0.

In order to evaluate the integral in equation (4.4) by the matrix methods developed here
we use a discrete representation of the path, as explained in section 2:r(s)→ ru, r(s

′)→
rv, and sets = u`2, s ′ = v`2. The last integral in equation (4.4) (including the normalization
factorN−1

0 ) can then be written as

I (k) = N−1
0

∫
D[r] exp(−µ tr T −H0+ ik · [ru − rv]). (4.5)

We note thatµ tr T = a
∑

iα r
2
iα − β

∑
α

∑
ij riαrjα, with a = µ/n and β = µ/n2.

Substituting this form into equation (4.5) gives an exponential factor exp[β(
∑

i riα)
2], which

can be conveniently written as

exp

[
+ β

(∑
i

riα

)2]
= (4πβ)−1/2

∫ ∞
−∞

dψ exp

(
− 1

4β
ψ2− ψ

∑
i

riα

)
. (4.6)

We carry out the integral in equation (4.5), using∫
DX e−X

TAX+VTX = πn/2(detA)−1/2 exp( 1
4VTA−1V) (4.7)
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whereA is ann × n non-singular matrix, andX is ann-component column vector. The
result is

I (k) = (4πβ)−d/2
(

detA(µ)
detA(0)

)−d/2 ∫
[dψ ] e−F(ψ,k). (4.8)

The functionF is given by

F(ψ, k) = 1

4β

(
1− β

∑
ij

A−1
ij

)∑
α

ψ2
α +

1

4
k2guv + i

2
tuvk ·ψ (4.9)

where

guv(µ) = A−1
uu + A−1

vv − 2A−1
uv (4.10)

tuv(µ) =
n∑
i=1

(A−1
iu − A−1

iv ) (4.11)

andA(µ) is a tridiagonal (or T̈oplitz) matrix:

Aij (µ) =


2γ + a i = j < n

−γ |i − j | = 1

γ + a i = j = n
0 otherwise.

(4.12)

Integration overψ in equation (4.8) leads to

I (k) = I (0) exp(−k2Guv) (4.13)

where

Guv(µ) = 1

4
guv + t2uv

16c
(4.14)

c is the coefficient of
∑

α ψ
2
α in equation (4.9), and

I (0) =
[

detA(µ)
detA(0)

(
1− β

∑
ij

A−1
ij

)]−d/2
. (4.15)

The right-hand side of equation (4.15) is another form forCn(0, µ), given by equation (3.3).
Since detA is given by equation (A22), we immediately obtain an expression forc:

c ≡ 1

4β

(
1− β

∑
ij

A−1
ij

)
= 1

4β
2F1(n+ 1,−n+ 1; 3

2;−z2)

2F1(n+ 1,−n; 1
2;−z2)

. (4.16)

Returning to the perturbation expansion of equation (4.3), we note that〈Hint〉0 there can
be obtained from the second term by settingµ = 0. Equation (4.3) can therefore be written
as

Cn(0, µ) = Z0− b`4
∫
k

∫ n

|u−v|>n0

du dv I (k)+ Z0b`
4
∫
k

∫ n

|u−v|>n0

du dv I (k)||µ=0 (4.17)

whereZ0 ≡ 〈 e−µ tr T 〉0 and I (k) is given by equation (4.13). The radius of gyration is
obtained by differentiating equation (4.17) with respect toµ and settingµ = 0:

R2
G = R2

G0 − b`4
∫
k

k2
∫ n

|u−v|>n0

du dv e−k
2Guv

d

dµ
Guv

∣∣∣∣
µ=0

(4.18)

whereR2
G0 is the size of a Gaussian chain (i.e. one without excluded volume interactions).

It is, therefore, only necessary to expandGuv to first order inµ(∝ z2).
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Using the standard formula

A−1 = adjA
|A| (4.19)

(adj the adjoint) for the inverse, we obtain

A−1
uv =

1

detA
Du−1An−vγ v−u u 6 v (4.20)

for the matrixAuv of equation (4.12).Dk is the determinant of thek × k matrix given by
equation (A3), and the determinantAn−v is obtained by deleting rows and columns 1 tov
from the originaln×n matrix A of equation (4.12). The indicesu andv in equation (4.20)
are interchanged for the caseu > v.

We can expressA−1
uv in terms of hypergeometric functions by noting from

equations (A17) and (A22) thatDu−1 = uγ u−1
2F1(−u + 1, u + 1; 3

2;−z2) and Ak =
γ k 2F1(−k, k + 1; 1

2;−z2). Thus, foru 6 v, equation (4.20) becomes

A−1
uv =

u

γFn
2F1(−u+ 1, u+ 1; 3

2;−z2) 2F1(−n+ v, n− v + 1; 1
2;−z2) (4.21)

whereFn ≡ 2F1(−n, n + 1; 1
2;−z2). We note that the inverseA−1

uv decomposes into a
product of two hypergeometric functions with different argumentsu andv. The indicesu
andv in equation (4.21) are interchanged for the caseu > v. Thus the inverse, given by
equation (4.21), is a symmetric matrix. Expanding the right-hand side of equation (4.21) to
O(z2), and substituting into equation (4.10), we obtain

guv(µ) = 1

γ

[
|u− v| − 4

3
z2(u− v)2(3n− 2w> − w<)

]
(4.22)

where factorization of the extra(u− v) in the z2 term was achieved by neglecting terms of
order unity, andw>(w<) represents the larger(smaller) of the pair(u, v). Similarly,

tuv(0) = 1

2γ
(u− v)[2n+ 1− u− v] (4.23)

which follows after some algebra, and, from equation (4.16),

c = n

16z2γ

[
1− 2

3
z2(n+ 1)(2n+ 1)

]
z2 = µ/(4nγ ) (4.24)

to first order inz2. As in the calculation ofguv, we will neglect the number 1 in the square
bracket of equation (4.23), since it is of little consequence. Combination of equations (4.14)
and (4.22)–(4.24) yields

d

dµ
Guv

∣∣∣∣
µ=0

= − 1

12nγ 2
(u− v)2(3n− 2w> − w<)+ 1

16n2γ 2
(u− v)2[2n− u− v]2. (4.25)

SinceGuv(µ = 0) = (1/4γ )|u− v|, thek-integral in equation (4.18) evaluates to [21]

1

(2π)d

∫
ddk k 2 exp

(
− k

2

4γ
|u− v|

)
= d

2

πd/2

(2π)d
`−2−d |u− v|−1−d/2 (4.26)

so that the size, given by equation (4.18), becomes

R2
G = R2

G0 − d
2
b
πd/2

(2π)d
`2−d(I1+ I2) (4.27)
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where

I1 = −4L2

3n3

∫ n

0

∫ n

|u−v|>n0

du dv |u− v|−1−d/2(u− v)2(3n− 2w> − w<) (4.28)

I2 = L2

n4

∫ n

0

∫ n

|u−v|>n0

du dv |u− v|−1−d/2(u− v)2(2n− u− v)2. (4.29)

The integralsI1 andI2 can be written in the form

T = m
∫ n

0

∫ n

|u−v|>n0

du dv |u− v|αvβ. (4.30)

Making a change of variablesx = u − v, y = v, and taking the cut-off into account, we
haveT = 2m

∫ n
n0

dx xα
∫ n

0 dy yβ . In this formT can be evaluated using the beta function
B(µ, ν) defined by [21]∫ u

0
(u− x)µ−1xν−1 dx = uµ+ν−1B(µ, ν) Reµ > 0,Reν > 0. (4.31)

It is convenient to split up the integral as
∫ n
n0
→ ∫ n

0 −
∫ n0

0 , which leads to

T = 2m

β + 1
nα+β+2B(α + 1, β + 2)− 2m

β + 1

∫ n0

0
dx xα(n− x)β+1. (4.32)

Use of the properties of the beta function [21] simplifies the sums of the formT to

I1 = −8

3
L2nd1

d5

d2d3d4
+11(n0) (4.33)

I2 = 2L2nd1
1

d2d3

(
1+ 2

d4d5

)
+12(n0) (4.34)

wheredk = k − d/2 and11, 12 are cut-off dependent terms.
Substituting equations (4.33) and (4.34) into (4.27), and redefining the parameters

`2→ `2/2, b→ b/2, we obtain the dimensionally regularized part ofR2
G:

R2
G =

Ld

6

[
1+ z

(2− d/2)(3− d/2)
(

1+ 4

4− d/2 −
6

(4− d/2)(5− d/2)
)]

(4.35)

wherez = bL2−d/2(2π)−d/2, and the sum of the cut-off dependent terms is

1 ≡ 11+12 = Ln1−d/2
[

14

3

1

2− d/2x
2−d/2
0 − 26

3

1

3− d/2x
3−d/2
0 +O(x4−d/2

0 )

]
x0 ≡ n0/n. (4.36)

The ε-expansion (ε = 4− d) of R2
G follows:

R2
G/R

2
G0 = 1+ 2

3

(
1− 13

24
ε

)
z (4.37)

in agreement with [8, 15]. In [15] Duplantier calculates partition functions, which exhibit a
divergence of the formx1−d/2

0 . The radius of gyration is given by a ratio of these partition
functions, and this divergence cancels out. This is due to factorization of exp[(L/n0)F ] in
the partition function, whereF is the local free energy associated with the short distance
divergences [8, 15]. Here too the divergence cancels out. We calculate the physical quantity,
R2

G, directly, as a derivative of the function〈exp(−µ tr T )〉 (equation (4.2)), and find in
equations (4.35) and (4.36) that the radius of gyration has no ‘ultra-violet’ divergence in
the regiond < 4 where the excluded volume interaction is relevant. This cancellation of
divergences is closely tied with the nature of the perturbation expansion in equation (4.3).
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4.2. End-to-end distance

The ratioR2
G/R

2
E is universal [22]. We therefore have to computeR2

E to complete our
analysis. Consider, therefore, the (discretized) Fourier transform exp(iq · [xu − xv]) and
expand it to first order in powers ofHint as in equation (4.3), obtaining

〈eiq·[xu−xv ]〉 = 〈eiq·[xu−xv ]〉0− b`4
∫
k

∫
dr dp〈 eiq·[xu−xv ]+ik·[xr−xp ]〉0

+b`4〈eiq·[xu−xv ]〉0
∫
k

∫
dr dp〈eik·[xr−xp ]〉0. (4.38)

It is instructive to look upon the averages in equation (4.38) as special cases of

Cn(k, q;µ) ≡ 〈exp(−µ tr T + ik · [xr − xp] + iq · [xu − xv])〉0 (4.39)

which evaluates to

Cn(k, q;µ) = Z0 exp(−k2Grp − q2Guv + 1
2k · qPuv;rp) (4.40)

whereZ0 = 〈exp(−µ tr T )〉0, and

Puv;rp(µ) = A−1
ur + A−1

vp − A−1
up − A−1

vr +
1

4c
tuvtrp. (4.41)

The integrand in the second term on the right-hand side of equation (4.38) isCn(k, q; 0);
the integrand in the third term isCn(k, 0; 0). We also find

Puv;rp(0) = 1
2(gur + gvp − gup − gvr) (4.42)

by the definition (4.10) forguv, and noting thatc−1tuvtrp|µ=0 = 0, by equation (4.24).
We digress briefly here for a look at the tethered membranes [23]. The expression for

Puv;rp(0) above is to be compared with an analogous expression in the study of tethered
membranes involving the Coulomb potentialCD(x − x′) in the ‘internal’D-dimensional
space (equation (3.8) of [23]):

AD(x1,x2;x,x′) = CD(x1− x)+ CD(x2− x′)− CD(x1− x′)− CD(x2− x). (4.43)

D = 1 for polymers andD = 2 for surfaces. It is clear from equations (4.42) and (4.43)
that we can identify (in the sense described below)guv(0) with (4/K)CD=1(xu−xv). One
can show that the termµ tr T defined by equation (2.2) introduces connections between a
particular monomer and other monomers that are not its nearest neighbours along the chain.
Equivalently, one can say that the effect ofµ in guv(µ) is to introduce correlations which
lead to the collapse of the chain, as we saw at the end of section 3. The generalization
of CD(x) is effected by increasing the value ofD from 1. SinceCD(x) ∝ |x|2−D [23],
we see that, for 1< D < 2, CD(x) corresponds to objects of smaller overall size than
those described byCD=1(x), for the same given contour size. More precisely, the fractal
dimension,df = 2D/(2 − D), is two for the random walk (D = 1) and infinite for a
surface (D = 2) [23]. ForD > 1, each ‘monomer’ in the membrane is connected to more
neighbours than is the case for the linear topologyD = 1. Therefore,guv(µ), µ > 0, is to
be identified withCD(x), D > 1.

SubstitutingCn(k, q; 0) andCn(k, 0; 0) from equation (4.40) into equation (4.38), and
taking−∇2

q |q=0, we obtain the end-to-end distance between monomersu andv as

R2
uv =

d

2
guv(0)+ b`4

∫
dr dp [P(0)]2

∫
k

k2 e−
1
4k

2grp(0) (4.44)
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where we suppressed the indices onPuv;rp(0). The end-to-end distance for the whole chain
is obtained by settingu = n, v = 1, for which

Pn1;rp(0) = 1

2γ
[|r − p| + n(δnr − δnp)]. (4.45)

The terms involving the Kronecker deltas do not contribute. Thek-integral in equation (4.44)
was evaluated in equation (4.26). This leads to∫ n

|r−p|>n0

dr dp|r − p|−1−d/2 = 2

(
nd3

d2d3
−
∫ n0

0
dx xd1(n− x)

)
(4.46)

wheredk = k − d/2. Rescaling̀ 2→ `2/2, b→ b/2, we finally obtain

R2
E

R2
E0

= 1+ z

(2− d/2)(3− d/2) (4.47)

wherez = bL2−d/2(2π)−d/2, andR2
E0 = Ld is the end-to-end distance of a Gaussian chain.

The cut-off dependence given by the integral on the right-hand side of equation (4.46) has
the structure obtained in [15]. Theε-expansion of equation (4.47) is

R2
E

R2
E0

= 1+ 2

ε

(
1− ε

2

)
z. (4.48)

This, combined with the corresponding equation (4.37) forR2
G, gives

R2
G

R2
E

= 1

6

(
1− z

12

)
(4.49)

which has been obtained in [8] and [15], and also by field-theoretic methods [24].

5. Conclusion

The usual approach in theoretical studies of long, flexible, polymers in a good solvent is
to adopt either a discrete model or a continuous one. In the discrete approach, exemplified
by [16, 22], the non-interacting part of the Hamiltonian, ensuring chain connectedness, is
Hdisc

0 = γ
∑n

i=1(ri − ri−1)
2 (equation (2.1)); the associated (discrete) excluded volume

interaction is modelled according to Domb [22]:Hdisc
int =

∏
i,j [1 + βδd(ri − rj )].

On the other hand, the continuous approach, exemplified by [5, 8, 15], takesHcont
0 =

(d/2`)
∫ L

0 ds[dr(s)/ds]2 and the interaction part asHcont
int = b

∫∫
ds ds ′ δd [r(s) − r(s ′)].

In the present paper we have adopted a hybrid approach consisting of adiscrete non-
interacting chain part,Hµ = µ tr T + Hdisc (equation (1.9)), of the Hamiltonian, and a
continuousexcluded volume interaction,Hcont

int , due to Edwards [14].
By introducing the termµ tr T we were able to construct the (canonical) partition

function for a discrete Gaussian chain. We express the result in terms of a hypergeometric
function, which is subsequently used extensively throughout the paper. Using the model
of Edwards for the excluded volume interaction, we derived dimensionally regularized
expressions forR2

G andR2
E, together with the cut-off dependence of [15]. In other words,

the ‘renormalization’ of a discrete chain (equation (1.9)) and of a continuous one (modelled
by Hcont

0 ), due to the excluded volume interactionHcont
int , turns out to be the same. This

seems to be consistent with the finding in [16], viz, that one can derive from a discrete
chain model results which are identical to those derived by sophisticated and elaborate
renormalization techniques based on a continuous chain model.

The technique developed in this paper can be used to study the polymer at theθ -point,
and the shape of a Gaussian chain. The latter will be pursued in a subsequent publication.
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Appendix. Evaluation of determinants

In this appendix we evaluate the determinant of the matricesMij (µ) (equation (3.1)) and
Aij (µ) (equation (4.12)), and express the results in terms of the hypergeometric function.
Mij (µ) can be diagonalized [13]. However, that approach only leads to a closed form
expression for detM in the limit n→∞. By using recursion relations for the determinants,
as well as differentiation formulae, we derive closed form expressions for detM and detA;
they are Jacobi polynomials. Let us decompose detM into tridiagonal forms so as to
emphasize the random walk nature of the problem. We have

detMn = detAn − b
n∑

m=1

mγ n−mDm−1. (A1)

This can be shown by evaluating detMn for small n and generalizing the results. HereA
is a tridiagonal matrix defined by

Aij =


2γ + a i = j = 1, 2, . . . , n− 1

γ + a i = j = n
−γ |i − j | = 1

0 otherwise

(A2)

andDm denotes the determinant of them×m Jacobi matrix

Dij =


2γ + a i = j
−γ |i − j | = 1

0 otherwise.

(A3)

It is straightforward to show that

detAn = (γ + a)Dn−1(x)− γ 2Dn−2(x) x = 2γ + a (A4)

so that all we need for the evaluation of detM in (A1) is Dm(x), which obeys the recursion
relation

Dm(x) = xDm−1(x)− γ 2Dm−2(x) (A5)

with the boundary conditionsD0 = 1, D−k = 0(k > 0). Dm(x) can be written as [25]

Dm(x) = γ m+1√
x2− 4γ 2

(vm+1
+ − vm+1

− ) (A6)

where

v± = 1

2γ
(x ±

√
x2− 4γ 2) (A7)

are the roots of the quadratic equationv2− vx + γ 2 = 0.
Using the form (A6), the sum in (A1) becomes

n∑
m=1

mγ n−mDm−1 = γ n√
x2− 4γ 2

[
v+

∂

∂v+

n∑
m=1

vm+ − v−
∂

∂v−

n∑
m=1

vm−

]
. (A8)
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Since
n∑

m=1

vm = vn+1− v
v − 1

(A9)

we find

v+
∂

∂v+

n∑
m=1

vm+ =
1

(v+ − 1)2
[nvn+2
+ − (n+ 1)vn+1

+ + v+] (A10)

and an analogous expression forv−. Using these in the square bracket of equation (A8),
and noting thatv+v− = 1, the sum becomes

n∑
m=1

mγ n−mDm−1 = n

a
[(a + γ )Dn−1− γ

a
Dn−1− γ 2Dn−2]. (A11)

Combining this with detAn given by equation (A4) leads to

detMn = γ

n
Dn−1(x) x = 2γ + a. (A12)

Let us express detM in terms of the hypergeometric function. We note a special case
of the hypergeometric function [26]

2F1(−n, n; 1
2;−z2) = 1

2[(
√

1+ z2+ z)2n + (
√

1+ z2− z)2n]. (A13)

Differentiating both sides of equation (A13) with respect toz2, using the property [26]

d

dx
2F1(a, b; c; x) = ab

c
2F1(a + 1, b + 1; c + 1; x) (A14)

we obtain

2F1(n+ 1,−n+ 1; 3
2;−z2) = 1

4nz
√

1+ z2
[(
√

1+ z2+ z)2n − (
√

1+ z2− z)2n] (A15)

which is related toDn in equation (A6). We show this as follows. Sincex = 2γ + a
(equation (A4)), anda = µ/n, we findx±

√
x2− 4γ = 2γ (z±√1+ z2)2, where we have

usedz2 = µ/(4nγ ). Substituting into equation (A6), we obtain

Dn−1(z) = γ n−1

4z
√

1+ z2
[(
√

1+ z2+ z)2n − (
√

1+ z2− z)2n]. (A16)

Comparing with equation (A15), we conclude

Dn−1(z) = nγ n−1
2F1(−n+ 1, n+ 1; 3

2;−z2). (A17)

Substituting into equation (A12), we obtain

detMn(µ) = γ n 2F1(−n+ 1, n+ 1; 3
2;−z2) z2 = µ/(4nγ ). (A18)

Apart from the factor0(3/2)0(n)/0(n + 1/2), the right-hand side of equation (A18) is
the Jacobi polynomialP (1/2,1/2)n−1 (1 + 2z2) [21]. It is also equivalent to the Gegenbauer
polynomial(1/n)C1

n−1(1+ 2z2) [21].
DetA can also be expressed as a hypergeometric function. Substitution of

equation (A17) into (A4) gives

detAn = γ n[n(1+ 4z2) 2F1(−n+ 1, n+ 1; 3
2;−z2)− (n− 1) 2F1(−n+ 2, n; 3

2;−z2)].

(A19)
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The right-hand side can be simplified by using the form (A15) for the hypergeometric
function and noting that the second hypergeometric function in the square bracket of
equation (A19) can be obtained from the first by the replacementn→ n− 1. The result is

detAn = γ n

2
√

1+ z2
[(
√

1+ z2+ z)2n+1+ (
√

1+ z2− z)2n+1]. (A20)

Comparison with the form

2F1(−n, n+ 1; 1
2;−w) =

1

2
√

1+ w [(
√

1+ w +√w)2n+1+ (√1+ w +√w)−2n−1]

|w| < 1 (A21)

([27], equation (7.3.10)) leads to

detAn = γ n 2F1(−n, n+ 1; 1
2;−z2) (A22)

since(
√

1+ w +√w) = (√1+ w −√w)−1.
Finally, we list several useful properties of the hypergeometric function. Since−n+ 1

is a negative integer,2F1(−n + 1, n + 1; 3
2;−z2) is a polynomial of degreen − 1; it is

(except for a constant) the Jacobi polynomialP
(α,β)

n−1 (x), with α = β = 1
2 andx = 1+ 2z2

[21]. For z < 1 the hypergeometric function can be expressed as a (convergent) power
series [6, 27]

2F1(a, b; c; z) =
∞∑
k=0

(a)k(b)k

(c)k

zk

k!
|z| < 1 (A23)

where (α)k ≡ 0(α + k)/0(α) = α(α + 1) . . . (α + k − 1), k = 1, 2, . . . , denotes the
Pochhammer symbol. It follows that2F1(a, b; c; 0) = 1. We also note the symmetry
2F1(a, b; c; z) = 2F1(b, a; c; z) with respect to interchange of the argumentsa andb.

In the limit n→∞(z < 1) one can use the hypergeometric series in equation (A23) to
obtain

2F1(−n, n+ 1; 1
2;−z2)→ cosh(2nz)

2F1(−n+ 1, n+ 1; 3
2;−z2)→ sinh(2nz)

2nz
n→∞ (A24)

after a bit of algebra. By equation (A15),

2F1(−n+ 1, n+ 1; 3
2;−1) = (

√
2+ 1)2n

4
√

2n

[
1− 1

(
√

2+ 1)4n

]
. (A25)
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